Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.12.21255098

ABSTRACT

While the majority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) display mild or no symptoms, rare individuals develop severe disease presenting with multisystem inflammatory syndrome (MIS-C). The reason for variable clinical manifestations is not understood. Here, we carried out TCR sequencing and conducted comparative analyses of TCR repertoires between children with severe (n=12) or mild (n=8) COVID-19. We compared these repertoires with unexposed individuals (samples collected pre-COVID-19 pandemic: n=8) and with the Adaptive Biotechnologies MIRA dataset, which includes over 135,000 high-confidence SARS-CoV-2-specific TCRs. We show that the repertoires of severely ill children are characterised by the expansion of TRBV11-2 chains with high junctional and CDR3 diversity. Moreover, the CDR3 sequences of TRBV11-2 clones shift away from SARS-CoV-2 specific T cell clones, resulting in distorted TCR repertoires. In conclusion, our study reports that CDR3-independent expansion of TRBV11-2+ cells, lacking SARS-CoV-2 specificity, defines severity of disease in children.


Subject(s)
Coronavirus Infections , Cryopyrin-Associated Periodic Syndromes , Hepatitis C, Chronic , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.18.210161

ABSTRACT

Pro-inflammatory immune responses are necessary for effective pathogen clearance, but cause severe tissue damage if not shut down in a timely manner1,2. Excessive complement and IFN-{gamma}-associated responses are known drivers of immunopathogenesis3 and are among the most highly induced immune programs in hyper-inflammatory SARS-CoV2 lung infection4. The molecular mechanisms that govern orderly shutdown and retraction of these responses remain poorly understood. Here, we show that complement triggers contraction of IFN-{gamma} producing CD4+ T helper (Th) 1 cell responses by inducing expression of the vitamin D (VitD) receptor (VDR) and CYP27B1, the enzyme that activates VitD, permitting T cells to both activate and respond to VitD. VitD then initiates the transition from pro-inflammatory IFN-{gamma}+ Th1 cells to suppressive IL-10+ Th1 cells. This process is primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating superenhancers and recruiting c-JUN and BACH2, a key immunoregulatory transcription factor5-7. Accordingly, cells in psoriatic skin treated with VitD increased BACH2 expression, and BACH2 haplo-insufficient CD4+ T cells were defective in IL-10 production. As proof-of-concept, we show that CD4+ T cells in the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 are Th1-skewed and that VDR is among the top regulators of genes induced by SARS-CoV2. Importantly, genes normally down-regulated by VitD were de-repressed in CD4+ BALF T cells of COVID-19, indicating that the VitD-driven shutdown program is impaired in this setting. The active metabolite of VitD, alfacalcidol, and cortico-steroids were among the top predicted pharmaceuticals that could normalize SARS-CoV2 induced genes. These data indicate that adjunct therapy with VitD in the context of other immunomodulatory drugs may be a beneficial strategy to dampen hyperinflammation in severe COVID-19.


Subject(s)
Pneumonia , COVID-19 , Vitamin D Deficiency
SELECTION OF CITATIONS
SEARCH DETAIL